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FOREWORD

This report is the first interim report for AFOSR Grant No. 78-3501.

It describes models for replacement processes with potential applications

to gas turbine engine management. Subsequent reports will describe how the

~models will be used to forecast replacement requirements and to develop

optimal policies for management of repairable high cost equipment.
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I. MODELS FOR AIRCRAFT ENGINE REPLACEMENT PROCESSES

A replacement process is a stochastic process similiar to a renewal
process except that the replacement components are not necessarily new. A
renewal process is a sequence of independently, identically distributed (iid)
- nonnegative random variables which represent the component lives. The prob-
ability theory for renewal processes is well known and complete. In replace-
ment processes, because the residual life of a used component depends on the
past history of that component, the random variables of component lives may
not be iid. The theory of renewal processes has to be extended to the non-iid
situations to handle replacement processes.

The objective of replacement process analysis is to compute the number
of replacements that will occur in satisfying a flying hour require-
ment of specified length given the ages of installed and spare engines. We
are proposing several models which may be useful for this purpose.

1. Single Engine Replacement Model

Let A denote the age of the engine at installation. Start
from time 0, assume A=a], if the engine failed after flying Y] hours,
then it is immediately repaired or overhauled. If it is repaired,
the engine will go back to service with age A=a] o Y], if it is over-
hauled, the age will be A=0. (Assume the maintenance action takes no time on
an operating time scale.) The process repeats again. The decision
to repair or overhaul depends on two factors: if an engine reaches
age MOT (maximum operating time) it will be overhauled, if age at
failure is less than MOT, it may be repaired or overhauled.
Assume the new engine has failure age distribution

F(x) = P {X< x} 0 < x < MOT,

o R S




and also assume the performance of an engine with age A is the
same as another engine with the same age. Therefore, given an
engine with age A, the conditional distribution of Residual Life
Y is F(y|A) = P (Y < y|x > A}. Figure 1 shows the distribution

of A's at a sequence of "replacement points."
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Figure 1 Ages at installation

Note that the distribution of Y, is conditioned on A,i.e. F(y IA]).
The distribution of Y2 is conditioned on A2 and in turn A2 is con-
ditioned on Y], and so on. Therefore the replacement process Y],

Y2, Y3 PPN | is a sequence of non-iid random variables. If

n* cce

the distribution of the sum of Y., Y Y3 ... Y, can be obtained,

2!
the distribution of the number of replacements as a function of
required operating time can be derived. If Y and A take values
on positive integers, this model can be formulated as a Markov

chain, if the Markov property is satisfied.

Multiple Aircraft Engine Replacement HModel

Assume at time O there are initially K aircraft (single-engined)
at a base with a spare engine inventory which consists of engines of
ages a,, ay, gy ... with distribution G(a,0). During the process,

if an engine fails, it is immediately replaced by a spare engine




randomly selected from the spare inventory. The removed engine
will go back to the spare inventory after being repaired or over-

hauled. Thus the entire process is a multi-channel replacement
process or superposition of replacement processes. The random

variables Y], Y2, Y3...for each channel not only depend on the
past history of its own channel, but also depend on the past history
of the other channels. The age distribution G(a,t) will depend on
the past history of all channels and there may not exist a station-
ary distribution lim G(a,t).

Thus the proﬁ?Zm of this model is to find the distribution
of G(a,t) and obtain the residual life distribution from G(a,t).
The total engine replacement requirement will be found from the
superposition of several non-independent individual replacement
processes. If the number of aircraft and inventory size is large,
we may be able to assume each replacement process is independent
of the other, the age distribution is independent of the past,
and all times between failures are identically distributed. In

this case renewal theory will be applied.

Multiple Aircraft with Multiple Engines

If aircraft are equipped with multiple engines, the residual
life of each engine will not only depend on its own past history
but also on the other engines of the same aircraft. Therefore the
age distribution at installation may not result from randomly se-
lecting engines out of the inventory.

The coﬁplexity of this model may make the problem solvable
only by approximation methods. We have not examined practical

applications sufficiently to propose models of this situation.




IT. MODELS FOR ENGINE AGE AT FAILURE DISTRIBUTION

The analysis of the models in section I depends on a suitable engine
age at failure model which will satisfy the following needs:
a. the model should represent the actual operating conditions of
the engine,
b. all relevant engine performance data should be fully utilized
by this model,
c. the model should be flexible even in the situation of changing
maintenance policies and engine configurations, and
d. the model should be manageable in the computation of engine
replacement requirements.
Several potentially useful models for engine ages at removal are described
in this section.

1. "Competitive Risk" Model

This model is described in [1] and takes into account the sig-
nificant probability of removals at inspection times. The distribution
function of time to first failure is assumed to be of the form

i(t)

F(t) =1 - (1-F,(8));1;  (1-p;)
where F](t) is the distribution function of a continuous nonnegative
random variable representing usage failure times, the p; are the prob-
abilities a failure is detected at inspection times t], tz,..., MOT
and i(t) is the index of the last inspection prior to or at time t.
The maximum likelihood estimator for this model is derived in [1]
and [2] for right censcred samples. The structure of this model
may make it easier for computation of replacement requirements using

analytical approximation methods or simulation. If the stationary




spare engine age distribution can be obtained (by simulation or
analytical methods), the residual 1ife distribution can be derived
from the conditional life‘distribution F(tla). By using the central
limit theorem, the number of replacements can be approximated. The
normal approximation is illustrated in Appendix I.

Phase Type Model

One of the major difficulties in analytical and computational
studies of replacement processes lies in the increasing complexity
which is introduced by conditioning on the past behavior of the
processes. Each unconditioning requires one integration. The phase
type model discussed in [3] will simplify the computation if the prob-
lems are formulated according to [3].

Assume the life of the engine proceeds in several

stages. Each stage represents the state of the life variable. Now

consider a (m+1) state Markov chain with integer state space {1,2,...,

m,m+1} whose transition matrix P is of the form

T T°
Pl gy fsenanens (1)

where T is a mxm matrix and T° is a column vector with m components.
State m+l is an absorbing state, namely the failure state. The prob-
ability of absorption into the state m+l, starting from any state, is
assumed to be 1.

A probability density {Vk} on the positive integers is of phase
type, if and only if there exists a finite matrix P of type (1) and
a vector a of initial probabilities, such that {Vk} is the density

of the time till absorption.




Suppose that each time an absorption into state m+l occurs in
the chain, we instantaneously restart the chain by choosing the
initial state according t6 a. Any vrestarting of the chain is
called a replacement. The density of time between replacements is
given by {Vk}. The convolution of {Vk}‘s will give the distribution

of the time till the nth

removal. Some of the classical theory on
finite Markov chains can be applied to this model. The recursive
computation method in [3] will reduce the computation effort to
an algorithm.

The problems with this model are the discretized failure
time variable, the estimation of the transition probability matrix
T and vector T°, and the initial probability vector o is not time
homogeneous for a typical spare engine inventory. We are willing
to assume that under stable conditions, the spare engine age distri-
bution has some limiting distribution 1im G(a,t) but we would like
to use the actual ages 31585504585 oft;:e current stock of spare
engines in forecasting replacement requirements.

Nevertheless, the phase type model has the potential to incor-
porate information in addition to engine age into the state space.
The state space could be the Cartesian product of a partition of

the engine life span [0,MOT] crossed with the number of prior repairs.

Time to Maintenance Models !l

These models are appropriate for engines which use the "on
condition majntenance" policy, fix it when it breaks. Such engines
have no periodic inspections and no MOT. To eliminate safety threat-
ening failures, life limits on critical components are specified in

terms of operating times or cycles or both. An engine is removed




for repair at failure or at expiration of a life limit. No over-
haul is done but replacement of life limited components rejuvenates
engines to some extent.

The models are similar to the competitive risk model formulated
for engines with periodic inspections and an MOT except the inspections
do not occur at fixed ageé and the engines are never overhauled. The
random variable represented by these models is the time between re-
movals. It is bounded above by the shortest time limit on the life
limited components. However, an engine may undergo a scheduled re-
moval for some other 1ife limited component prior to the upper bound.
For example, suppose an engine with two 1ife 1imited components with
1imits 1000 and 1500 hours. The second scheduled removal occurs at
1500 hours assuming no unscheduled removals occur and no opportunistic
replacement of the second component is done at the 1000 hour removal.

Superimposed on the sequence of scheduled removals for replace-
ment of life Timited components will be the unscheduled removals
caused by engine failures. There will be a distribution function
dependent on time since last removal but not necessarily dependent
on the age of the engine. Perhaps it will be sufficient to charac-
terize the time between failures distribution by the number of prior
removals.

The form of the distribution function of times between removals

will be
F(t) = F](tl]],lz,...]k) Fp(t)

where F](t|11,12....1k) is the probability distribution of time

between scheduled removals and Fz(t) is for times between failures.




The 1, are the time 1imits on life limited components. \F](tl1],12,...1k)
incorporates ages of life 1imited components because this distribution
may be practically degenérate making forecasting of scheduled remov-

als very accurate.

"Concomitant Variables" Iodel

A model based on regression is suggested in Cox [4] when several
measurements of performance are recorded as the concomitant variables.
It is assumed that the failure rate function at time t for a given

set of concomitant variables z = (21,22,23...zp) is given by

A(t,z) = ro(t)exn(zg)

where z is a row vector of measurements of age, number of prior
removals, etc.andg is a column vector of corresponding parameters
for those variables. The function A, (t) is the failure rate function
when all concomitant variables are zero. If the failure rate function
is continuous, we can express the relation between 1life distribution
F(t) and failure rate function as follows:

1 - F(t) = exp [-g“' A (t)e Z5dt]
which is equivalent to

0 -In{1-F(t))

[ A (t)dt
O o
Since x» (t) = -In(1-F(t)) when the vector z = 0, we can interpret

¢
™

A (t) as the failure rate of new engine on which all the concomitant
o

variables are zero. By properly selecting the variables in z vector,

the vector g can be estimated by regression. Marginal likelihoods of

the parameters g are obtained in [4] and [5].




The advantage of this model is the potential to incorporate
many engine performance variables. But on the other hand, the con-
comitant variables shou]d.be identified before the model can be con-
structed. The regression model can also be used to test the relevancy
the variables. However, the resulting 1ife model is not convenient
for analytical replacement computation, even for renewal processes.
Since the life is a function of z, for used engines with different
z values, the convolution of the life variables will become fairly
complicated.

This model may be applied to construct the "phase type model"
to simplify the computation (subsection 2).

A Markovian Model for the Age of Spare Engines

The age of the installed and spare engines in a fleet has an
effect on the number of replacements required to achieve a flying
hour program. If the engines are old, the number of replacements
will be larger than if the fleet consists of a large proportion of
new or recently overhauled engines. The current actuarial system
takes into account the ages of installed engines but does not use
available information on the ages of spare engines. This is not

because it can't be done but because the choice of the sequence of

spare engines to install is left to the discretion of the base main-
tenance managers and is consequently unknown to the AFLC personnel
computing replacement requirements. A random sequence for instal-
lation could be used, but the loss of accuracy for choosing the
wrong sequence has not been estimated. Furthermore, there aren't
very many spare engines with known ages in serviceable status at
base level at the time replacement requirements are computed. Many

of the spare engines used during the 30 quarter duration of the
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flying hour program are engines that fail, are repaired, and return
to service during the 30 quarters.

In order to incorporate spare engine ages into replacement
requirements computations, we need to be able to represent the cumu-
lative distribution function of the ages of the serviceable spare
engines at any time in the future (as well as the number of spares
which is a consequence of the replacement iequirements). The rep-
resentation would appear like an empirical distribution function
given the number of spare engines s in stock, (figure 2 is an

example).

A P [Engine Age < x/s]

Bl
% L1/s

i

|

l 1
! |
‘ ﬂ_J | i o]
| |
0 a a Hﬁi §=age (flying hours)

Figure _ 2 The Age Distribution of Spare Engines
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The age of a spare engine depends on the age of the engine at
its last previous removal and its removal cause. Engines with ages
exceeding maximum operatiﬁg time (MOT) are overhauled and their age
after overhaul when they return to serviceable spares status is
assumed to be zero. There is also an age dependent probability
an engine removed with age < MOT will also be overhauled. Other-
wise when an engine is returned to serviceable status, its age is
its age at the last previous removal, and, in the actuarial replace-
ment requirements computation [8], such an engine is assumed to be
as good as any other engine with the same age regardless of repair
history.

A probability model to describe the age of spare engines is
as follows. Let Xn denote the age of an engine after its nth re-
moval. The sequence {(Xn n);n=0,T,...} is a stochastic process

which will be a discrete or continuous state Markov process with

+ .+ : : ;
state space R xN ', (nonnegative reals x nonnegative integers).

age at
removal @
- —@/ oo SRS i e (e e
: ® = age at
£ removal
‘su/jb “y/_‘
/A'qc__- SR __/ A SRS p» flying hours
| # /
age of spa
engine et b R
X, i Bttt ol e _

i x: age after the
| maintenance

2 0 . 5
0 : : ‘ number of removals

Figure__3 Relationship of age at removal
and age of spare engine




12

Let P(a,n) denote the probability an engine will be overhauled

if its age at nth

removal is a. The stochastic process Xn is
defined by the relation
0 if Xn+T > MOT

X =40 if Xn+T < MOT with probability P(Xn+T,n+1)

n+l
n+T if Xn+T < MOT with prob. 1-P(Xn+T,n+1).

The random variable T is the time between removals and its distribution
may depend on Xn and n but on no prior history of the engine. (See
figure 3 for a sample realization.) The distribution of X, is
related to the distribution of spare engine ages given the number of
spare engines s. In particular, lim Xn represents a typical engine in
steady state. s

The distribution of 1im Xn can be converted into a discrete dis-
tribution with s jumps ofn;:ual height to represent the steady state
age distribution of s spare engines. One procedure is shown in
figure _ 4 . Three engines have age zero and the remaining 8 engines
have ages spread over (0,MOT). The bias of this discretization will

have to be investigated.
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Figure _4  Converting the cdf of lim X, to an Age
nyo

Distribution of 11 spare engines

If the state space is discretized to (N+)2, the distribution
of Xn can be computed by classical Markov chain theory from the
transition probability matrix.

In a simpler case, where the distribution of random variable T
only depends on Xn and P(a,n)=P(a) (i.e. assume the overhaul prob-
ability is only age dependent), the transition probability matrix
can be estimated from the available actuarial data.

Appendix 1 shows an approximation procedure for replacement
requirements which depends on knowledge of the age distribution of
the entire stream of future spare engines. That is the reason for
our concern 'with some representatioﬁ of ages of spare engines.
Markovian models are particularly attractive because continuous state
continuous time Markov processes can be approximated by diffusion processes
which have normally distributed transition probabilities. Diffusion processe
have representations as (sometimes) tractable differential equations for

probability densities.
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Modeling the Removal Times of Conditional Maintenance Engines

The current actuarial model of engine ages at removal [8] has
a fixed upper limit called the maximum operating time (MOT). Engines
which reach this age are removed, overhauled, and their age is reset
to zero. This policy results in removal and overhaul of engines
that may have continued to operate beyond MOT. The conditional
maintenance policy has been adopted as an alternative for several
engine types and will probably spread throughout the fleet. Under
this policy, an engine is never removed at MOT for an overhaul but
may continue to age indefinitely unless its performance calls for repair.
Of course engine removals do occur, but the reasons for removal
are different.
1. Removals occur at unscheduled times for failures of
engine components or accessories.
2. Removals occur for safety reasons to replace critical,
life Timited components when they reach their time or
cycle limit, whichever occurs first.
3. Removals occur for external causes such as foreign
object damage (FOD).
Other causes for removal occur but either they do not cause a demand
on the spare engine inventory or else they are unpredictable, directed
removals.
A competitive risk model [7] hypothesizes engine removal is
caused by thg occurrence of the first of several causes.
The model can incorporate right censoring readily because censorship
is another competing cause that results in removal of an engine from
the sample. This is handy to represent engines that survive removal

to a fixed calendar time such as the end of a quarter. The competitive
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risk model lends itself to actuarial computation of engine removals
because the actuarial failure rates for competing removal causes add.

Assume the failure réte functions for n competing removal causes
are r1(t),...,rn(t). Then the cumulative distribution function of age
at removal is

i=1 !

F(x) = t-expl-f* 7 r.(t)dt]
0

(This is true if the causes act independently, but is also true for
some models even if the causes aren't independent [7].)
One failure rate function can be used to represent each of the three
causes of removal Tisted above. In turn, each of these three failure
rate functions may be the sum of several failure rate functions for
each of several competing causes of engine removal.

For instance, there are 75 life limited components in the F100PW100
engine. The life limits are chosen so that the probability of failure
prior to the life limit is acceptably small. Furthermore, the failure
process is a function of operating time (or flying hours) and low cycle
fatique, and the life Timits are in terms of hours and engine cycles.
Whichever limit occurs first causes engine removal. Unfortunately Tow
cycle fatigue is not accumulated in direct proportion to operating
flying time (figure 5) so there is some probability the life limit in
cycles is reached prior to the time limit. We have three competing
causes for removal of an engine for each life limited component:

1. The hour Timit is reached, Lj

2. the cycle limit is reached, Cj and

3. failure occurs prior to reaching either life limit.
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We expect the failure rate function for a life limited component to

appear as shown in figure 6  and the corresponding actuarial failure

rates to be as shown below the figure. The actuarial failure rate is

the area under the failure rate function between the end points of the

actuarial age intervals.
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Figure_g The Failure Rates for a Life Limited Component

The relation between the accumulation of cycles and hours may be
linearly proportional, but the proportionality factor is random.
Let Nc(T) be the number of cycles accumulated during T flying

hours, and K is the random proportionality factory then
NC(T) = KT

and engine removal for replacement may be represented as occurring

at time

inf {tl (N.(t)>C) U (Tzﬁ)}
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The probability K takes on its several values can be estimated as

the proportion of aircraft flying each type of mission, and the values
of the proportionality factor are the average rate at which cycles are
accumulated for each type of mission.

The other causes of engine removal can also be modeled by failure
rates or a failure rate function. External causes probably operate
at a rate independent of engine age and so may be assumed constant,
or at least dependent only on operating time since last removal, but
not on the age of an engine. Removals due to failure of external
accessories or nodife limited components are a major proportion of
total removals. The failure rates for this cause may be estimated by
the actuarial method with the time origin as the time of the last re-
moval or the time of the last major (depot) repair. If the time ori-
gin is taken at age zero, the number of actuarial age intervals is
unbounded.

For modular engines, there can be sets of failure rates for
unscheduled removals for each module as well as for the whole engine
and its external accessories. The origin for modules might be set
at each major module repair such as replacement of a life limited
component, and the time origin for the engine removals might be any
removal and repair.

This procedure of selecting the time origin means that the ran-
dom variable time between removals has the upper bound which is the
smallest time 1imit on the 1ife limited components. Consequently
the actuarial methods can be used, and the smallest time limit is
probabily smaller than current MOT's allowing the use of fewer actu-

arial age intervals without loss of accuracy.
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However, the procedure for making the actuarial computations
must be modified because some components are not renewed at a re-
moval and because the meéhanism causing unscheduled removals of
modules is not reset to zero at minor repairs on the module or if
a removal had no effect on the module. Table 1 shows the modified
actuarial computation. Two examples illustrate the computations

procedures.

Example 1 Suppose an engine has two life limited components with

failure rates R]j and R,. and ages 400 hours and 0 hours respectively

2j
(as shown in Table 2). Assume ROj is a set external cause failure
rates. The ranges of the indexes j for different components depends

on their time limits as in Table 1. To adjust R].j for used components,
we shift the Rij column upward ta its corresponding interval (as

shown in R{j column of Table 2). Thus the combined failure rate

Rj is the sum of ROj’ R{j, and sz. The number of removalg and

the number of survivors are computed in the same manner as in the
actuarial method. In order to compute the replacement requirements

for a given flying program, we should know the maintenance policy.

For instance, the outputs from Table 1 are 0.01 removals and 0.99
survivors for flying one pass of 200 hours. The 0.99 survivors can
continue through the computation, but the 0.01 removal will need a
replacement for the next pass. Notice the cause of this 0.01 removal
is the external cause. Whether the component #1 and #2 will be re-

newed at the time of an externally caused removal depends on the

maintenance policy.
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Example 2 Table 3 is an example of an engine composed of 2 modules with
3 life Timited components. The computation method is similar to
example 1 except the Rij matrix is expanded and the 3 1ife limited

~
component failure rates are adjusted to the component ages at last repair.

The general structure of this computation is a multivariate Markov
chain where the state is a vector of times or ages since each component
was new. The Markov chain vector advances from its initial conditions,
the ages of the components at the time of engine installation, actu-
arial age interval by actuarial age interval until one of the time
limits is reached or until one of the competing causes results in
engine removal. The problem with this representation is specifvinag
the initial distribution over all possible initial engine states
because initial engine sgate depends on maintenance policy.

This discretized representation of engine ages has several virtues.
It is based on the current actuarial system so it will be familiar to
Air Force engine managers. The discretization allows us to derive re-
placement requirement results for the discrete case and then take a limit
as the width of the actuarial age intervals goes to zero to prove con-
tinuous time results. Last, the whole actuarial structure is based on
Markovian assumptions so we may be able to borrow on the theory of Markov
nrocesses which is rich in maintenance applications and loaded with com-
putation simplifications. The vice of the discrete representation is
that practically every engine will require its own actuarial table. Only
engines with the same component ages-at last repair could be incorporated
into a single actuarial table. We have not broached this complication

to AFLC actuaries yet.
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III. MODELS FOR RANDOM FLYING HOURS PER QUARTER BY DIFFERENT AIRCRAFT

At the time the proposal was submitted we proposed analysis of replace-
ment processes, renewal processes where the replacement items aren't new. We

were also interested in the replacement requirements for the superposition

- of replacement processes. All of the properties for superposition of renewal

processes are based on the assumption that each component renewal process op-
erates for exactly the same amount of time. This is not true for our appli-
cation, predicting engine replacement requirements for a fleet of aircraft,
because not all aircraft fly the same share of the flying hour program. We
are concerned about the effect of this observation on the superposition of
renewal and replacement processes. Consequently we have formulated models

to describe unequal flying hours achieved by a fleet of aircraft in accom-
plishing a fixed total flying hour program.

Most studies on the prediction of the engine replacement requirements
formulate the requirement as a function of total flying hours assigned to a
fleet. This is based on two assumptions, the total flying hours assigned to
a fleet are assumed to be met exactly and all aircraft share an equal amount
of the flying hours assigned to a fleet. In fact, based on past experience,
neither assumption holds precisely.

The randomness caused by violationof either assumption will have the
following effects:

a. The total expected requirements in a quarter may no longer

be accurate, _
b. The long term replacement requirements based on the
known flying hours will have large variance than expected, and

c. The different usage rate near the end of a quarter may affect

the engine 1ife distribution and consequently will affect the

accuracy of the requirements forecast.
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For more satisfactory results on the forecast of replacement require-
ments, it is necessary to investigate the distribution of the actual flying
hours on each aircraft and the distribution of actual flying hours accom-
plished by a fleet. Several models are proposed here for this purpose:

1. Normal Distribution

Let TA denote the flying hours assigned to a fleet and T denote
the actual total flying hours accomplished by a fleet. Assume
that events {T»TA} and {T<TA} are possibie, then the normal distribution
may describe the actual flying hours per aircraft per quarter.
This has been suggested by one study of Air Force fleets. (We do
not have the reference to this study.)
If there are n aircraft in a fleet and X], XZ’ X3,...Xn
denote the actual flying hours on each aircraft, then T=X]+X2+X3+...
+Xn. Suppgse X]’XZ""Xn age independently and identically distributed
with mean ~%~and variance %«3 then by central 1imit theorem, if n is
large, T has approximately a normal distribution with mean TA and
variance 02.
The problems with this model will be:
(1) Test the assumptions used in this model, and
(2) Estimate the parameters of the distribution.

2. Shared Flying Hour Program

Suppose the allocation of flying hours to each aircraft follows
this procedure. At the beginning of a quarter, the total amount of
flying hours'TA are shared equally by each aircraft. During the
quarter, assume some accidents or aircraft maintenance actions occur,
and an aircraft is removed from the fleet and its remaining flying

hours are equally reallocated to all remaining aircraft. If another
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removal occurs, the remaining flying hours on that aircraft are
again equally reallocated to the others. If the removal rate is
small, then at the end of each quarter, most of the aircraft will
have an equal amount of flying hours (which are greater than the
original assignment) except a few aircraft will have unequal hours.

If there is an upper limit on the flying hours assigned to
each aircraft during a quarter, excess flying hours will not be
flown. Thus the flying hours assigned to this fleet may not be
met exactly. (One such limit is the number of calendar hours in
a quarter, 90x24=2160 hours.)

This model may represent the actual flying hour assignment
process even though additions to the fleet have not been represented.
If it is easy to represent removals from the aircraft fleet, it
shouldn't be too hard to also represent additions to the fleet and
the consequent reduction in flying hours per aircraft. This model
reflects the fact that the flying hours are accumulated at a faster
rate near the end of each quarter. This change of the accumulation

rate can also be incorporated in the model.
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APPENDIX I

1. Normal Approximation for the Number of Replacements

Consider a replacement process to be a sequence of independent but not
identically distributed random variables {Y;3 i=1,2,...}. Suppose the Yi
variables are conditional random variables all drawn from the same unconditional
distribution H(y) but given the Yi value is greater than some age a; so Yi
comes from the distribution H(yla) = P[Y < ylY > a]. The objective is to obtain

an approximation for the number of replacements in the sequence {Yi} during an

interval from zero to x, N(x).

n
The total operating time till nth replacement is = Yk'
n k=1
Since { & Yk < x} is equivalent to {N(x) > n}, the distribution of number
k=1
of replacements is
n
PN(x)>n} =P (1Y, <x) Sere (1
k=1
n
The distribution of I Yk will provide the information to compute the distribution
k=1

of N(x).
Since the Yk's are not identically distributed, the central 1limit theorem
of the sum of i.i.d. random variables cannot be applied directly. But by

n
Lindeberg Condition, Gnedenko [6] page 289, the sum = Yk is asymptotically

normally distributed, and so, too, may be N(x). 5
Let Mk = E(Yk)
Bﬁ =Var(k%]Yk)
T: a positive constant
if the condition
s M- (Y, M )24 H, (¥, )=0 s (2

2
me B k=1 (Y, -M|> t B

O b i S,
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exists, then

p[%—

>3]

g A 2
D (Y, -M ) < x] = — exp(-z°/2)dz
nks1 K K N TE f- Gt = )

By some algebraic manipulation,
n

P {g B (VM) <x)
k=1

o

:P{

U I e = §

-—

(Yk-Mk) < an}

ey

]
el
~

H M3

n
Y. <B ¥+ ¥ M}
k n k=] k

=
-—

i 2
M)>n}= — [ exp(-z°/2)dz e (4
e e

This implies that the distribution of number of replacements in the time

n
from (1), P {N(an + I

k=1

n
interval [0, an + 3z Mk) can be approximated by a normal distribution if the

condition (2) holds% }f

(a) the variances of Yk's are finite, and

(b) Y],YZ,...,Yk...wi11 converge to a random variable Y when k increases,
then the integral of the conditions (2) will converge to a finite value while
Bn increases indefinitely.

Since the Yk‘s are bounded by the maximum component life (in aircraft
applications), the variances of Yk are finite. The only condition left to
be proved is the convergence of Yk . If the convergence of Yk is sure,
the replacement process in the steady state is a renewal process:. This con-
vergence is shown in the following subsections.

2. Residual Life Distribution of Used spare components

Suppose a branq new spare component has- life distribution Function
F(x) = P{T<t}. T is a random variable representing the life of the component.
If the spare component is put into service when its age is a, the dis-

tribution of time till failure is no longer F(t) unless a=0. The remaining life

QLT
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time is called residual life of the used spare component. It depends on the
age a.

The conditional distribution of residual life can be derived as follows.
Let t denote the residual life. The probability that a component of age a

will survive until a+t is

F(tla) P.{a<T <a+t|T>a}

Pr{a<T <att}
P{T>a}

_ F(att) - F(a) o
1-F(a)

Thus if a is a known fixed constant, the distribution of residual life
can be computed using (4).
3. Residual life distribution of a used spare component if the age distribution
of spare components is known.

Let the random variable A represent the age of the spare component with
distribution

G(a)=P {A<a}, g(a) is the probability density function.
Define the unconditional residual 1ife distribution H(t)= P {T < t}

Since H(t) = EA[F(t'A)]

= [o F(tla)g(a)da

from ( 4) » = f: Ei%%%%§§i§l g(a)da van - B

If F & G are completely specified, the equation (5) can be evaluated to obtain
the residual life distribution. If F is not exponential, the evaluation of
the integral will become completed. If F is piecewise exponential, as inthe

"competitive risk" model of section II.1, for example,

F(x) = 1-e” ™ ;(’) (1-p,)

i=]




' — e

0 X<0

Yup N x<x<1000

1-e"*%(1-0.25) 1000<x <2000
“{1-e(1-0.252  2000<x<3000

1-e"2%(1-0.25)3 3000<x<4000

1 4000<x

Then for some age distribution g

H(t) = IEOT Eié%%%%§§§l— g(a)da

2000
_ (1000 F(a+t)-F(a (a+t)-F(a
= lq THERL sladdar fig PR a(@)aa + .+
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4000
3000

In case the integral cannot be evaluated explicitly, numerical integration

may be used. Therefore H(t) can be determined as long as G(a) is known.

4. Convergence of spare engine age distribution

Since the non-identical residual life distributions Hl(Yl)’HZ(Yz)""Hk(Yk)

are produced from non-identical age distribution G],G Gk’ if G

AR K
to a distribution G, Hk(Yk) will also converge to a distribution H(Y).

The distribution of Gk

's converge

's depend on the past history of the replacement

process, maintenance policies, and parts provisioning. The convergence of

the G

K will be first tested on the simulation model. Analytical proof will

be also investigated. If the analytical proof can not be obtained, the dis-

tribution of G can still be estimated from the simulation and eq (5) can be

evaluated numerically. A model for G is in subsection II.5.

— —
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